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Effects of large computational time steps on the computed
turbulence were investigated using a fully implicit method. In turbulent
channel flow computations the largest computational time step in wall
units which led to accurate prediction of turbulence statistics was
determined. Turbulence fluctuations could not be sustained if the
computational time step was near or larger than the Koclmogorov time
scale.  © 1994 Academic Press, Inc.

I. INTRODUCTION

All direct and large eddy turbulence simulations to date
have either used explicit time advancement methods or
semi-implicit methods (implicit treatment of viscous terms)
for wall-bounded flows, Examination of the three-dimen-
sional frequency/wave-number power spectrum of wall-
pressure f{luctuations in turbulent channel flow obtained
from direct numerical simulations [1] reveals that
negligible power resides in or about the Nyquist frequency
corresponding to the computational time step used with a
commonly used semi-implicit method. The computational
time step used in the channel simulations of Kim ez al. [2]
was 0.0676v/uZ, where v is the kinematic viscosity and u, is
the wall-shear velocity. Since the viscous time scale in the
sublayer is (1) in wall units [3], one may conclude from
this observation that the restriction on time step imposed by
semi-implicit methods may be too stringent to maintain
accuracy. Furthermore, complex geometries and the
associated grid distributions and clusterings may impose a
severe restriction on the time step for direct simulation of
complex turbulent flows. For example, if the flow geometry
contains sharp corners (e.g., riblet tips), rapid variation of
flow variables in their vicinity requires dense grid clustering
which would restrict the computational time step. A fully
mplicit method 1s required to determine the maximum time
step that can be taken while maintaining accuracy.
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A fully implicit method for the unsteady incompressible
Navier-Stokes equations was developed in generalized
coordinate systems {see Choi et al. [4]). This method is
based on a fractional-step technique [5] in conjunction
with a Newton-iterative scheme for solving the nonlinear
momentum equations. The flow field is represented on a
staggered grid, and a Poisson ¢quation for the pressure
correction is solved to satisfy the continuity equation at
every time step.

The objectives of the present study are to investigate the
effect of the computational time step on turbulence statistics
using a fully implicit method and to find the largest
computational time step in wall units with which accurate
prediction of turbulence statistics in plane channel flow can
be obtained at a given Reynolds number.

The numerical method is briefly described in Section 2.
Numerical results for turbuient plane channel flow with
different computational time steps are presented in Section 3,
followed by a summary in Section 4.

2. NUMERICAL METHOD

The governing equations for an incompressible flow are
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where x,’s are the Cartesian coordinates, and u,’s are the
corresponding velocity components. All variables are
non-dimensionalized by a characteristic velocity and length
scale, and Re is the Reynolds number.

The integration method used to solve Egs. (1} and (2) is
based on a fully implicit, fractional step method; all terms in
Eg. (1) are advanced with the Crank—Nicolson method in
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Implicit treatment of the convective and viscous terms
eliminates the numerical stability restriction. By substitut-
ing Eqgs. {4} and (6) into Eq. (3), one can easily show that
the overall accuracy of the splitting method is second order.
Note that the present scheme does not require any special
treatment of the intermediate velocity boundary condition
(see, for example, Kim and Moin [5] about this issue). That
is, the intermediate velocity boundary condition is simply
d,=u}*"' to second order in the time step. This can be
shown from Eqs. (4) and (6),

& n+l__ am
P il )
ox

=+ 4 O(4r). (7)

i

All the spatial derivatives are resolved with the second-
order central-difference scheme using a staggered mesh
system. The discretized nonlinear momentum equations are
solved using a Newton-iterative method. The continuity
equation is satisfied through the solution of a Poisson equa-
tion (5). A complete description of a variant of this method
in generalized coordinate systems is given in Choi et af. [4].

3. NUMERICAL RESULTS FOR TURBULENT
PLANE CHANNEL FLOW

The computations were carried out for a Reynolds num-
ber of 4200 based on the laminar centerline velocity U/, and
the channel half-width ¢ which corresponds to a Reynolds
number of about 180, based on the turbulent wali-shear
velocity 1, and the channel half-width é. For the Reynolds
number considered here, the computational box is chosen
to be the minimal flow unit of Jiménez and Moin [6]; the
streamwise and spanwise computational periods are né and
0.28978, respectively (roughly 570 and 160 wall units,
respectively). The grid points used are 16 x 129 x 32 in the x,

vy, and z directions, respectively. Uniform meshes with
spacing Ax™ = Axu,jva35 and Az* = Azu, /v x5 are used
in the streamwise and spanwise directions. A non-uniform
mesh of 129 points with hyperbolic tangent distribution is
used in the wall-normal direction. The first mesh point away
from the wall is at y* = pu, /v = 0.15, and the maximum
spacing (at the centerline of the channel) is seven wall units.

The initial flow field is an instantaneous solution of the
Navier-Stokes equations previously obtained using a semi-
implicit method. Starting from this initial velocity field, the
governing equations were integrated forward in time until
the numertcal solutions reached statistically steady states.
These statistically steady states were identified by a quasi-
periodic behavior of the wall-shear stresses. Once the
velocity field reached the statistically steady state, the
equations were integrated further in time to obtain time
averages of the various statistical quantities. The total
averaging time was about 500 8/U, (& 4000v/u?).

Six different computational time steps in wall units,
At =Am?/v=02, 04, 08, 1.2, 1.6, and 2, have been
investigated. These computational time steps correspond
to the CFL numbers, CFL =max(|u|/dx+|v)/dy+
|wi/dz) Ar=05,1, 2, 3, 4, and 5.

The time histories of the plane-averaged wall-shear rates
for four different computational time steps are shown in
Fig. 1. Stochastic and intermittent bebavior of the wall
shear stress is clearly discernible for the small computa-
tional time steps. It is interesting to note that the
calculations with At* = 1.6 and 2 resulted in laminar flow
solutions. The viscous time scale in the sublayer (the
Kolmogorov time scale), t+ = (u?/ev)¥? [3], is about 2.4 in
wall units, where ¢ is the dissipation rate per unit mass (the
profile of ¢ for turbulent channel flow is shown in Mansour
et al. [7]). Given that the computational time steps of 1.6
and 2 are close to the Kolmogorov time scale, it may be
deduced from this observation that the computational time
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FIG. 1. Time histories of the plane-averaged wall-shear rates for
different computational time steps: —, 4t* =02; .-, 4¢* =04, —~,
At* = 1.6; —-—, At* = 2.0. Normalized wall shear rate (du/dy)!, 6/U,=2
corresponds to fully developed laminar plane channel flow.
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FIG, 2. Variation of root-mean-square velocity fluctuations with the
computaional time step: —, 4t =02, ——, A1* =04, .., 21T =0.3;
—— At =12

step should be fess than the Kolmogorov time scale to
maintain turbulence.

It is well known that the amplification factor of the
Crank-Nicolson scheme approaches — 1 when applied to
the diffusion equation with a large time step. This may then
lead to unphysical effects on the turbulent motions (e.g.,
large dissipation) and one may conclude that the observed
laminarizations with large time steps can be attributed to
the unphysical behavior of the numerical scheme rather
than to the poor resolution of the time scales of turbulent

eddies. Therefore, the calculations with A¢* = 1.6 and 2
were repeated with the backward Euler scheme applied to
the diffusion terms; however, they once again resulted in
laminar flow solutions, confirming the Crank-Nicolson
results.

Figure 2 shows the turbulence intensities normalized by
the wall shear velocity. The results using the present fully
implicit method are shown only for 4¢* =0.2, 0.4, 0.8, and
1.2. The calculations with large computational time steps
overpredict the steamwise fluctuations (u,,,) and under-
predict the normal and spanwise fluctuations (v, W.n,)
when compared with the result of the smallest computa-
tional time step (A4t7 =0.2). The turbulence intensity
profiles from the simulation with 4¢* = 0.4 nearly coincide
with those of the A4:™ = 0.2 simulation.

The Reynolds shear stress profile is shown in Fig. 3. The
computations with large computational time steps under-
predict the peak Reynolds shear stress. The Reynolds shear
stress from the A4t =0.4 calculation is very close to that
from the 4¢* =0.2 calculation.

Vorticity fluctuations have significant contributions from
small-scale turbulence motions. Root-mean-square vorticity
fluctuations normalized by the mean shear at the wall
(w,;v/u?) are shown in Fig. 4. The calculations with large
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FIG. 3. Variation of the Reynolds shear stress with the computational
time step: —, 417 =02, ——, At* =04; ., At" =08;—.—, d1T =12,
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FIG. 4. Variation of root-mean-square vorticity fluctuations with the
computational time step: —, 4¢* =0.2; ~——, Ai* =04; .-, At =038;
- 41T =12

computaticnal time steps underpredict the streamwise
vorticity fluctuations and overpredict the normal vorticity
fluctuations when compared with the results of the
computations with A:* =02. The vorticity fluctuations
from the 4¢* =04 and 4¢t* =0.2 computations are nearly
identical.

It appears that turbulence statistics from simulations with
Ar*t =04 (4tU,/6=0.05) are sufficiently close to those
from calculations with 4™ =02. The non-dimensional
computational time step A:* = 0.4 was therefore used in the
computation of turbulent flow over riblets {Choi ef al. [8]),
where application of a variant of the present fuily implicit
method in curvilinear coordinates led to a factor of five
savings in the required CPU time as compared to a semi-
implicit method. Note that in the riblet computations,
A1 =04 corresponded to CFL = 3.

4. SUMMARY

The effect of large computational time steps on the
computed turbulence was investigated for the first time
using a time-accurate, fully implicit method. The objective
was to find the largest time step in wall units which
accurately predicts turbulence statistics in turbulent plane
channel flow at a given Reynolds number. It was
demonstrated that turbulence fluctuations can only be
sustained if the computational time step is appreciably less
than the Kolmogorov time scale. Application of a fully
implicit method to turbulent flow over riblets resulted in a
factor of five savings in the required CPU time compared to
a semi-implicit method.
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